Magnet & Related Technologies Round Table Discussion

Andrzej Siemko

AT DTTO

CERN 7-8 June 2006

CERN participants:

Lucio Rossi - Leader of Magnets and Superconductors Group

Louis Walckiers - Leader of Magnet Test and Measurements Group

Wili Kalbreier - Leader of Normalconducting Magnets Section in Magnets and Electrical Systems Group

Davide Tommasini - Leader of Magnet Coordination Section in MAS Group

Stefano Sgobba - Leader of Metallurgy and Metrology Section in Mechanical and Materials Engineering Group

Walter Wuensch – Radio Frequency Group

Main subjects of the workshop

Information on new and ongoing projects Up to date with the latest magnet technology development at CERN and in industry TT opportunities TT networking R&D collaboration with CERN

Trends in Magnets Technologies

Three trends of superconducting magnets for accelerators

- fast cycled (common interest with FAIR and possibly medical applications)
- high field (any cost)
- high field low cost

Desirable initiatives in Europe

More participation and efforts into base Sc materials research Development of wire/cable processing & industrialization Consolidate practical experience with such magnets Development of concepts for low cost HF magnets : design and manufacture

Energy doubler/tripler

Critical Current Density, A/mm²

Magnet Technologies Trends, development and collaboration possibilities workshop

LHC Upgrades

Interaction regions upgrade : xx MEuros

Luminosity Upgrade

New quadrupoles and possibly new dipoles in the interaction regions : needed in 2015

Injectors upgrade : xxx MEuros

Luminosity and Energy Upgrade

Fast cycled, low losses superconducting magnets : 5-10 years program

Energy doubler 7 TeV to 14 TeV : xxxx MEuros

Energy upgrade

New dipoles and quadrupoles in the arcs : 15-20 years program

Fast cycled magnets for injectors

Requirements

Bore diametre 80-100 mm Peak field 3.5 T up to 5 T/s or 5 T up to 1.5 T/s Capable to perform several millions cycles in a radiative environment Capable to draw beam deposited energy of the order of 5-10 W/m

State of the art

Superferric magnets with internally cooled cables, 2 T peak, 4T/s, 1 Hz, based on JINR Nuclotron. GSO001 model, based on a modified RHIC type dipole, built by BNL for the FAIR Project.