

Overview of new science projects

Ken Peach

John Adams Institute for Accelerator Science

7th June 2006

http://www.adams-institute.ac.uk

Ken.Peach@adams-institute.ac.uk

1. Introduction

- What is particle physics?
- Why do we need technology "at the edge"?
- 2. The LHC
 - Present status
 - Implications of future upgrades
- 3. The Linear Collider
 - What it is and why is it needed
 - Present status and possible future
- 4. Neutrino Facilities
 - What are they and why are they nee
 - Present status and possible future
- 5. Other projects
 - Some examples
- 6. Summary and Conclusions

Introduction

What is particle physics? Why do we need technology "at the edge"?

http://www.adams-institute.ac.uk

Ken.Peach@adams-institute.ac.uk

The particle physics "Mission Statement"

- 1) Identify the most fundamental constituents of the Universe
- 2) Describe how they interact and inter-relate and if possible
- 3) Explain why 1) and 2) above are as they are, and cannot be otherwise
- Then, we have "understood" how the Universe works at its deepest (simplest?) level

in the first billionths of a second after the Big Bang

But we are left with the task of explaining how the rich complexity that developed in the ensuing 13.7 billion years came about... Which is a much more complex task!

The experimentalist's view

J.A.I.

The Standard Model (again)

The Standard Model Effective Lagrangean

$\mathcal{L}_{(\text{Standard Model})}$	=	
[W [±]]	_	$rac{1}{2}(heta_{\mu}W_{ u}- heta_{ u}W_{\mu})(heta^{\mu}W^{\dagger u}- heta^{ u}W^{\dagger\mu})+M_{w}^{2}W_{\mu}W^{\dagger\mu}$
[Photon]	_	1 -FarFar
[Z°]	_	$F_{\mu}^{2}F_{\mu\nu}^{2}+\frac{1}{M^{2}}M^{2}Z_{\mu}Z^{\mu}$
(6. pc)	+	$\frac{2}{2L}$ $\frac{\partial L}{\partial L} + \frac{2}{R} \frac{\partial R}{\partial R} - m \frac{\partial L}{\partial t}$
[Wev]	_	$\frac{g}{L_{t}} \overline{L_{t}} (\tau_{+} W + \tau_{-} W) L_{t}$
[7 ^{t+t-}]	+	√2 e_s/mtAl
$[Z\ell^+\ell^-, Z\nu\overline{\nu}]$	_	$\frac{g}{\cos\theta_w}\overline{L_\ell}\left(\frac{\tau_3}{2}\cos^2\theta_w+\frac{1}{2}\sin^2\theta_w\right)\not\!$
[H]	+	$\frac{1}{2}\partial_{\mu}H\partial^{\mu}H - \frac{1}{2}\mu^{2}H^{2} - \frac{1}{2}\lambda\mu H^{3} - \frac{1}{8}\lambda^{2}H^{4}$
[HH&H W ⁺ W ⁻]	+	$rac{g^2}{8} \left(H^2 + rac{2\mu}{\lambda} H ight) \left(2 W_\mu W^{\dagger \mu} ight)$
[HH&H ZZ]	+	$rac{g^2}{8}\left(H^2+rac{2\mu}{\lambda}H ight)\left(rac{1}{\cos^2 heta_w}Z_\mu Z^\mu ight)$
[H ℓ ⁺ ℓ ⁻]	_	$m_t \sqrt{\sqrt{2}G_r} \mathcal{U}H$ The Higgs Sector
įquark γj	+	Qq#q
[quark Z]	-	$\frac{g}{\cos\theta_w}\overline{L_q}\left(\frac{\tau_3}{2}\cos^2\theta_w+\frac{\sin^2\theta_w}{2}\right)\not\!\!\!/ L_q$
[quark W]	-	$\frac{g}{\sqrt{2}}\overline{\mathcal{U}}V_{\mathrm{CDM}}\left(au_{+}W+ au_{-}W ight)\mathcal{D}$
[quark H]	_	$m_q \sqrt{\sqrt{2}G_p \bar{q} q} H$
[gluons]	_	1 Fa Far
[quarks]	+	$\overline{\mathcal{U}}(\imath \theta - m_{\mathcal{U}})\mathcal{U} + \overline{\mathcal{D}}(\imath \theta - m_{\mathcal{D}})\mathcal{D}$
[quark gluon]	+	$\mathfrak{sg}T^{\mathfrak{a}}\left(\overline{\mathcal{U}}\mathfrak{A}^{\mathfrak{o}}\mathcal{U}+\overline{\mathcal{D}}\mathfrak{A}^{\mathfrak{a}}\mathcal{D}\right)$
[3 gluons]	+	$rac{g}{2} \left(heta_{\mu} A^{a}_{ u} - heta_{ u} A^{a}_{\mu} ight) f^{abc} A^{b\mu} A^{c u}$
[4 gluons]	_	$\frac{g^2}{4}f^{abe}f^{amy}A^b_{\mu}A^{\sigma\mu}_{\mu}A^{\mu\nu}$
excluding GRAVITY		

The Parameters

- 6 quark masses
 - $\mathbf{m}_{u}, \mathbf{m}_{c}, \mathbf{m}_{t}$
 - $\mathbf{m}_{d}, \mathbf{m}_{s}, \mathbf{m}_{b}$
- 3 lepton masses
 - $\mathbf{m}_{e}, \mathbf{m}_{\mu}, \mathbf{m}_{\tau}$
- 2 vector boson masses

$$- \mathbf{M}_{w,} \mathbf{M}_{z}$$

- 1 Higgs mass
 - M_h
- 3 coupling constants
 - $-\mathbf{G}_{F}\alpha_{A}$
- 3 quark mixing angles
 - θ_{12} , θ_{23} , θ_{13}
- 1 quark phase

δ

J.A.I.

How good is the Standard Model?

The Standard Model Effective Lagrange $\mathcal{L}_{(Standard Model)} =$ $- \frac{1}{2} (\partial_{\mu} W_{\nu} - \partial_{\nu} W_{\mu}) (\partial^{\mu} W^{\dagger \nu} - \partial^{\nu} W^{\dagger \mu}) + M_w^2 W_{\mu} W^{\dagger \mu}$ $[W^{\pm}]$ Photon $[Z^{c}] = F_{\mu\nu}^{2}F^{2\mu\nu} + \frac{1}{2}M_{2}^{2}Z_{\mu}Z^{\mu}$ $+ i\overline{L_t} \partial L_t + i\overline{R_t} \partial R_t - m_t \mathcal{U}$ $[\ell, \nu_t]$ $-\frac{g}{\sqrt{2}}\overline{L_{\ell}}(\tau_+W+\tau_-W)L_{\ell}$ $[W\ell\nu]$ $[\gamma l^+ l^-] + e_{e/m} \bar{l} A l$ $[Z\ell^+\ell^-, Z\nu\overline{\nu}] \qquad - \frac{g}{\cos\theta_w}\overline{L_\ell}\left(\frac{\tau_3}{2}\cos^2\theta_w + \frac{1}{2}\sin^2\theta_w\right) \not Z L_\ell - \frac{g\sin^2\theta_w}{\cos\theta_w}\overline{R_\ell} \not Z R_\ell$ + $\frac{1}{2}\partial_{\mu}H\partial^{\mu}H - \frac{1}{2}\mu^{2}H^{2} - \frac{1}{2}\lambda\mu H^{3} - \frac{1}{8}\lambda^{2}H^{4}$ [H] $+ rac{g^2}{8} \left(H^2 + rac{2\mu}{\lambda} H
ight) \left(2 W_\mu W^{\dagger \mu}
ight)$ [HH&H W+W-] $+ \frac{g^2}{8}\left(H^2 + \frac{2\mu}{\lambda}H\right)\left(\frac{1}{\cos^2\theta_r}Z_\mu Z^\mu\right)$ [HH&H ZZ] $-m_t\sqrt{\sqrt{2}G_t}\mathcal{U}H$ [H l+l-] [quark γ] $+ Q\bar{q}Aq$ $-\frac{g}{\cos\theta_w}\overline{L_q}\left(\frac{\tau_3}{2}\cos^2\theta_w+\frac{\sin^2\theta_w}{2}\right)\not\in L_q$ [quark Z] $- \frac{g}{\sqrt{2}} \overline{\mathcal{U}} V_{\text{CHM}} (\tau_+ W + \tau_- W) \mathcal{D}$ [quark W] $-m_a\sqrt{\sqrt{2}G_{gq}H}$ [quark II] $-\frac{1}{-F^{\alpha}}F^{\alpha\mu\nu}$ [gluons] + $\overline{\mathcal{U}}(\imath \partial - m_{\mathcal{U}})\mathcal{U} + \overline{\mathcal{D}}(\imath \partial - m_{\mathcal{D}})\mathcal{D}$ [quarks] $+ y_{\mathcal{T}}^{\alpha} (\overline{\mathcal{U}} A^{\alpha} \mathcal{U} + \overline{\mathcal{D}} A^{\alpha} \mathcal{D})$ [quark gluon] + $\frac{g}{2} \left(\partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} \right) f^{abc} A^{b\mu} A^{c\nu}$ [3 gluons] - gr fabe fary Ab A A A A [4 gluons] excluding GRAVITY

2005	
	Fit
$\Delta \alpha_{had}^{(5)}(m_2)$	0.02767
m _z (GeV)	91.1874
Γ _z [GeV]	2.4965
σ ⁰ _{had} [nb]	41.481
R	20.739
A.01	0.01642
A(P.)	0.1480
Rb	0.21562
R _c	0.1723
A ^{0,b}	0.1037
A ^{0,c}	0.0742
A _b	0.935
A _c	0.668
A _I (SLD)	0.1480
sin ² θ _{eff} (Q _{fb})	0.2314
m _W [GeV]	80.389
F _w [GeV]	2.093
m, [GeV]	178.5

J.A.L

How good is the Standard Model?

Omeas-Ofit/gmeas

Fit

The Standard Model Effective Lagrange 2005 L(Standard Model) $rac{1}{2}(\partial_{\mu}W_{
u}-\partial_{
u}W_{\mu})(\partial^{\mu}W^{\dagger
u}-\partial^{
u}W^{\dagger\mu})+M^{2}_{w}W_{\mu}W^{\dagger\mu}$ $[W^{\pm}]$ Measurement - TFAFA [Photon] $- F_{\mu\nu}^{2}F^{2\mu\nu} + \frac{1}{2}M_{2}^{2}Z_{\mu}Z^{\mu}$ $\Delta \alpha_{\rm bas}^{(0)}({\rm m}_2)$ 0.02758 ± 0.00035 0.02767 $[Z^{\circ}]$ m, [GeV] 91.1875 ± 0.0021 91.1874 $+ i\overline{L_{t}} \partial L_{t} + i\overline{R_{t}} \partial R_{t} - m_{t}\overline{\ell}\ell$ $[\ell, \nu_t]$ $-\frac{g}{\sqrt{2}}\overline{L_{\ell}}(\tau_+W+\tau_-W)L_{\ell}$ WLV 2.4965 F, [GeV] 2.4952 ± 0.0023 [7l+l-] + ee/mlAl ohart [nb] 41.540 ± 0.037 41,481 $- \frac{g}{\cos\theta_w}\overline{L_t}\left(\frac{\tau_3}{2}\cos^2\theta_w + \frac{1}{2}\sin^2\theta_w\right) \not\!\!\! \not\!\! Z L_t - \frac{g\sin^2\theta_w}{\cos\theta_w}\overline{R_t} \not\!\!\! Z R_t$ 20.767 ± 0.025 20.739 $[Z\ell^+\ell^-, Z\nu\overline{\nu}]$ 0.01714 ± 0.00095 0.01642 + $\frac{1}{2}\partial_{\mu}H\partial^{\mu}H - \frac{1}{2}\mu^{2}H^{2} - \frac{1}{2}\lambda\mu H^{3} - \frac{1}{8}\lambda^{2}H^{4}$ [H] A(P.) 0.1465 ± 0.0032 0.1480 $+ \frac{g^2}{8} \left(H^2 + \frac{2\mu}{\lambda} H \right) \left(2W_{\mu} W^{\dagger \mu} \right)$ [HH&H W+W-] 0.21629 ± 0.00066 0.21562 R, $+ \frac{g^2}{8} \left(H^2 + \frac{2\mu}{\lambda} H \right) \left(\frac{1}{\cos^2 \theta_w} Z_\mu Z^\mu \right)$ 0.1723 [HH&H ZZ] 0.1721 ± 0.0030 ADD ADD 0.0992 ± 0.0016 0.1037 $-m_t\sqrt{\sqrt{2G_t}\mathcal{U}H}$ [H l+l-] 0.0742 $[quark \gamma]$ + Q740 0.0707 ± 0.0035 $-\frac{g}{\cos\theta_w}\overline{L_q}\left(\frac{\tau_3}{2}\cos^2\theta_w+\frac{\sin^2\theta_w}{2}\right)\not\not\cong L_q$ 0.923 ± 0.020 0.935 [quark Z] **18 measurements** 0.668 $- \frac{g}{\sqrt{2}} \overline{\mathcal{U}} V_{\text{CHM}} (\tau_+ W + \tau_- W) \mathcal{D}$ 0.670 ± 0.027 [quark W] 18 d.o.f A(SLD) 0.1480 0.1513 ± 0.0021 $-m_a\sqrt{\sqrt{2}G_y}\overline{q}qH$ quark H sin² tept (Q_p) 0.2324 ± 0.0012 0.2314 $3 > 1\sigma$ - Fa Fan [gluons] m_w [GeV] 80.425 ± 0.034 80.389 + $\overline{\mathcal{U}}(\imath \partial - m_{\mathcal{U}})\mathcal{U} + \overline{\mathcal{D}}(\imath \partial - m_{\mathcal{D}})\mathcal{D}$ [quarks] $1 > 2\sigma$ GeV] 2.133 ± 0.069 2.093 + $yT^{\alpha}(\overline{\mathcal{U}}A^{\alpha}\mathcal{U}+\overline{\mathcal{D}}A^{\alpha}\mathcal{D})$ [quark gluon] 178.5 + $\frac{g}{a} \left(\partial_{\mu} A^{a}_{\mu} - \partial_{\nu} A^{a}_{\mu} \right) f^{abc} A^{b\mu} A^{c\nu}$ m. [GeV] 178.0 ± 4.3 [3 gluons] Almost too good! - gr fabe fary Ab A A A W A SW [4 gluons] excluding GRAVITY

2

- The Standard Model is a very good description of the Universe at the particle scale (~2M_W)
 - But does not explain many things
 - Why so many particles?
 - Why so many forces?
 - What is mass?
 - Why do particles have the masses they have?
 - How do neutrinos get mass?
 - Are neutrinos different? How do they fit in?
 - What is Dark Matter? Dark Energy?
 - Why is matter different from antimatter?
 - (Where did all the antimatter go?)
 - Where does gravity fit in?

2 routes to new knowledge about the fundamental structure of the matter

High Energy Frontier

New phenomena (new particles) created when the "usable" energy > mc² [×2]

High Precision Frontier

Known phenomena studied with high precision *may* show inconsistencies with theory

To reach higher energy

- To go beyond the LEP/Tevatron energy scale

• ~100-500GeV

I A I

- The Large Hadron Collider
- The Linear Electron-Positron Collider

• To reach higher precision

- 10 × statistics would make
 - this effect (if real) 8σ
 - Particle "factories"
 - Strange, Charm, Tau, Bottom,...

New types of accelerator

- Neutrino factories
- Beta beams
- Muon colliders ...

The LHC

Present status Implications of future upgrades

http://www.adams-institute.ac.uk

Ken.Peach@adams-institute.ac.uk

What is the LHC?

After the LHC?

– What next?

AI

- Need to study the new discoveries
 - Precision measurements
- History shows that
 - Proton colliders are good at discovery
 - e⁺e⁻ colliders are good at precision measurement
- Need higher energy than LEP
 - But synchrotrons at the limit
 - Synchrotron radiation
 - ∞E^4 at fixed radius
 - i.e. $2 \times \text{Energy} = 16 \times \text{Power or } 16 \times \text{Radius}!$

Back to the Linac!!!!

pp "Floodlight"

The Linear Collider

What it is and why is it needed Present status and possible future

http://www.adams-institute.ac.uk

Ken.Peach@adams-institute.ac.uk

- elementary particles
- well-defined
 - energy,
 - angular momentum
- uses full COM energy
- produces particles democratically
- can mostly fully reconstruct events

After Barry Barish

Why an e+e- collider?

$LHC \rightarrow$

After Barry Barish

J.A.I.

The Linear Collider

JAI.

After Rainer Wanzenberg

After Barry Barish

JAL

SLAC – The Stanford Linear Accelerator (Centre

J.A.I.

J.A.I.

The heart of the Linear Collider

After Rainer Wanzenberg

An issue – Beam Delivery System

After Rainer Wanzenberg

J.A.I.

- The Superconducting RF Technology used in the ILC has a maximum accelerating gradient of around 50MV/m
 - -1 TeV = 20 Km of acceleration
 - + ~10 Km of Beam delivery System, diagnostics etc
 - 3 TeV → 60 Km of acceleration
 - Is there a better technology?
 - i.e. with a higher accelerating gradient
 - » Target ~150MeV/m

• CLIC aim:

LAI

- develop technology for e-/e+ collider with E_{CMS}= 1 - 5 TeV
- Physics motivation:
 - "Physics at the CLIC Multi-TeV Linear Collider
 - report of the CLIC Physics Working Group,"
 - CERN report 2004-5
- Present aim:
 - Demonstrate all key feasibility issues by 2010

After Robert Aymar

AL

New accelerating structure concept HDS

Royal Holloway University of London

- Damping waveguides + slotted iris
 - \rightarrow improved HOM damping and vacuum
- Geometry optimized
 - \rightarrow reduced $\rm E_{SURF}/E_{ACC}$ and pulsed heating
- Assembly without brazing
 - \rightarrow reduced cost for mass production
 - \rightarrow cold worked Cu-Zr with improved mechanical strength
- Molybdenum iris tips
 - \rightarrow higher \mathbf{E}_{ACC}

J.A.I.

CLIC RF power source layout

Drive beam time structure - initial

J.A.I.

Drive beam time structure - final

- Build a small-scale version of the CLIC RF power source, in order to demonstrate:
 - full beam loading accelerator operation
 - electron beam pulse compression and frequency multiplication using RF deflectors
- Provide the 30 GHz RF power to test the CLIC accelerating structures and components at and beyond the nominal gradient and pulse length (150 MV/m for 70 ns).
- Tool to demonstrate CLIC feasibility issues identified by ILC-TRC

Neutrino Facilities

What are they and why are they needed **Present status and possible future**

http://www.adams-institute.ac.uk

Ken.Peach@adams-institute.ac.uk

Neutrino Facilities: What are they and why are they needed

Recent discoveries in neutrino physics ("neutrino oscillations") require new neutrino facilities

• Beams of precisely known composition ($v_{e,}v_{\mu}v_{\tau}$), energy (spectrum) and flux

Both need new physics input (q13) and the development of new technologies

Both are "1B€' projects (accelerator, storage ring, detectors)

J.A.I.

Conventional Neutrino Beams

- Main components
 - Proton Beam
 - Energy, Intensity, frequency
 - Target
 - Horn (focussing)
 - Decay Region
 - Beam Dump
 - Detector

JAL
Example of a Neutrino Beam

West Area Neutrino Facility at CERN SPS

Ken Peach

JAL

John Adams Institute

A

- 1950's and early 60's
 - Nature (and existence) of the neutrino
 - (Reines & Cowan, Lederman, Schwartz and Steinberger)
- Late 1960s, 1970s, 1980s
 - Structure of the nucleon
 - F₂, xF₃ etc
 - Structure of the weak current
 - Neutral currents, $sin_2\theta_w$ etc
- Now, and future
 - Nature of the neutrino
 - Neutrino Mass and Neutrino Oscillations
 - Standard Model assumption of massless neutrinos is wr
 - Note: difficult to add neutrino mass to SM *a la Higgs*
 - Lack of Charge \rightarrow additional mass-like (Majorana) terms
- New Physics at last!!!!

Neutrinos disappearance ν_e $v_e \rightarrow v_\mu$ appearance $v_e \rightarrow v_{\tau}$ appearance disappearance $v_{\mu} \rightarrow v_{e}$ appearance $v_{\mu} \rightarrow v_{\tau}$ appearance

... and the corresponding antineutrino interactions

Note: the beam requirements for these experiments are:

high intensity

known spectrum

known flux

known composition

(preferably no background)

Recent & Running Experiments (2)

206/2003

- T2K (Tokai [J-PARC] to SuperKamiokande)
 - Under construction
- NOvA (Fermilab to "somewhere near MINOS")
 - Under consideration

NuMI Off Axis

- •~ 2 GeV energy :
 - Below τ threshold
 - Relatively high rates per proton, especially for <u>antineutrinos</u>
- •Matter effects to differentiate mass hierarchies
- •Baselines 700 1000 km

J.A.I.

Neutrinos NOT from π **decay!**

 Generate the neutrino beams from unstable particles in storage rings with long straight sections

CP-violation

β -beam ($v_e \rightarrow v_\mu$ appearance)

- Need $E_{v_{\alpha}} > 100 \text{ MeV}$
 - Conventional (high energy) neutrino beams
 - Come from K decays
 - small fraction of beam
- New idea (Zucchelli)
 - β beams
 - Pure electron (anti) neutrino beams

from

accelerated radioactive ions

Possible β^+ emitters (v_e)

Isotope	Ζ	Α	A/Z	T _{1/2}	Q _{β (gs>gs)}	Q _{β eff.}	E _{β av.}	E _{v av.}	<e_lab> (MeV)</e_lab>
				S	MeV	MeV	MeV	MeV	(@450 GeV/p)
8B	5	8	1.6	0.77	17.0	13.9	6.55	7.37	4145
10C	6	10	1.7	19.3	2.6	1.9	0.81	1.08	585
140	8	14	1.8	70.6	4.1	1.8	0.78	1.05	538
150	8	15	1.9	122.2	1.7	1.7	0.74	1.00	479
18Ne	10	18	1.8	1.67	3.4	3.4	1.50	1.86	930
19Ne	10	19	1.9	17.34	2.2	2.2	0.96	1.25	594
21 Na	11	21	1.9	22.49	2.5	2.5	1.10	1.41	662
33Ar	18	33	1.8	0.173	10.6	8.2	3.97	4.19	2058
34Ar	18	34	1.9	0.845	5.0	5.0	2.29	2.67	1270
35Ar	18	35	1.9	1.775	4.9	4.9	2.27	2.65	1227
37K	19	37	1.9	1.226	5.1	5.1	2.35	2.72	1259
80Rb	37	80	2.2	34	4.7	4.5	2.04	2.48	1031

Possible β^{-} emitters ($\overline{v_{e}}$)

Isotope	Ζ	Α	A/Z	T _{1/2}	Q _{β (gs>gs)}	$Q_{\beta \text{ eff.}}$	E _{β av.}	E _{v av.}	<e_lab>(MeV)</e_lab>
				S	MeV	MeV	MeV	MeV	(@ 450 GeV/p)
6He	2	6	3.0	0.807	3.5	3.5	1.57	1.94	582
8He	2	8	4.0	0.119	10.7	9.1	4.35	4.80	1079
8Li	3	8	2.7	0.838	16.0	13.0	6.24	6.72	2268
9Li	3	9	3.0	0.178	13.6	11.9	5.73	6.20	1860
11Be	4	11	2.8	13.81	11.5	9.8	4.65	5.11	1671
15C	6	15	2.5	2.449	9.8	6.4	2.87	3.55	1279
16C	6	16	2.7	0.747	8.0	4.5	2.05	2.46	830
16N	7	16	2.3	7.13	10.4	5.9	4.59	1.33	525
17N	7	17	2.4	4.173	8.7	3.8	1.71	2.10	779
18N	7	18	2.6	0.624	13.9	8.0	5.33	2.67	933
23Ne	10	23	2.3	37.24	4.4	4.2	1.90	2.31	904
25Ne	10	25	2.5	0.602	7.3	6.9	3.18	3.73	1344
25Na	11	25	2.3	59.1	3.8	3.4	1.51	1.90	750
26Na	11	26	2.4	1.072	9.3	7.2	3.34	3.81	1450
	24 March 2006								

J.A.I.

Ken Peach John Adams Institute

- Concept: J. Burguet-Castell (Valencia) J. Sato (TUM)
 - $N + e^{-} \rightarrow N' + v \dots$ two body decay
- Most favourable isotope?
 - ¹⁵⁰Dy: half-life = 7.2 mins; E_v = 1.4 MeV; BR ~100%
- Energy spectrum:
 - Removes migrations between energy bins
- Powerful in combination with beta-beam

• Parameters

JAI.

- Need to know that θ_{13} is not zero
 - Other parameters well known to fix (E_μ,L)
- Technology
 - Proton driver
 - RCS or LINAC?
 - Proton energy?
 - HARP, E910, MIPP
 - Target
 - MW beam power
 - Mercury, solid, liquid-cooled, pellet, ...
 - Pion/muon collection and/or cooling
 - Magnetic Horns or Solenoids?
 - Phase Rotators, FFAG's, cooling?
 - RF and acceleration
 - RLA's or FFAG's?
 - Muon Storage Ring
 - Racetrack, triangular or bow-tie
 - Conventional or FFAG?
- Other uses of high power protons & muons?

Fixed Field Alternating Gradient accelerator

Rob Edgecock/CCLRC

The FFAG model

- High Power Proton Driver
 - Muon g-2
- Muon Factory (PRISM)
 - Muon LFV
- Muon Factory-II (PRISM-II)
 - Muon EDM
- Neutrino Factory
 - Based on 1 MW proton beam
- Neutrino Factory-II
 - Based on 4.4 MW proton beam

PRISM

Targets

Muon Cooling

- ~ same power as SNS targets
 - Open
 - Small
 - Environmental protection?

- <u>Certainly</u> needed for a muon collider
- <u>Almost certainly</u> needed for a neutrino factory
 - (combined FFAG/cooling or ring-coolers?)

nTOF11 (MERIT)

CERN-INTC-2003-033 INTC-I-049 26 April 2004

A Proposal to the ISOLDE and Neutron Time-of-Flight Experiments Committee

Studies of a Target System for a 4-MW, 24-GeV Proton Beam

J. Roger J. Bennett¹, Luca Bruno², Chris J. Densham¹, Paul V. Drumm¹, T. Robert Edgecock¹, Tony A. Gabriel³, John R. Haines³, Helmut Haseroth², Yoshinari Hayato⁴, Steven J. Kahn⁵, Jacques Lettry², Changguo Lu⁶, Hans Ludewig⁵, Harold G. Kirk⁵, Kirk T. McDonald⁶, Robert B. Palmer⁵, Yarema Prykarpatskyy⁵, Nicholas Simos⁵, Roman V. Samulyak⁵, Peter H. Thieberger⁵, Koji Yoshimura⁴

> Spokespersons: H.G. Kirk, K.T. McDonald Local Contact: H. Haseroth

Participating Institutions

- 1) RAL
- 2) CERN
- 3) KEK
- 4) BNL
- 5) ORNL
- 6) Princeton University

Proposal submitted April 26, 2004

AI

nTOF11 (MERIT)

(V. Graves/P. Spampinato, ORNL)

"Syringe" pump system delivers 1.6 l/s of mercury in a 20-m/s jet for 10-20 s.

J.A.I.

Programme

- 24 GeV Proton beam
- Up to 28 x 10¹² Protons (TP) per 2μs spill
- Proton beam spot with $r \le 1.5 \text{ mm rms}$
- 1cm diameter Hg Jet
- Hg Jet/Proton beam
 off solenoid axis
 - Hg Jet 100 mrad
 - Proton beam 67 mrad
- Test 50 Hz operations
 - 20 m/s Hg Jet
 - 2 spills separated by 20 ms

- Ship Pulsed Solenoid to MIT July 2005
- Test Solenoid to 15 T peak field August 2005
- Test Cryogenic valve box September 2005
- Integration of Solenoid/Hg Jet system Summer 2006

AI

simulations (Samulyak) of Hg-jet target reaching high levels of sophistication

Ionization Cooling

John Adams Institute Ken Peach

63

J.A.I.

Royal Holloway University of Londos

Other projects

Some examples

- 1. SR & Free Electron Lasers
- 2. Hadron Therapy

Synchrotron Radiation and Free Electron Lasers

http://www.adams-institute.ac.uk

Ken.Peach@adams-institute.ac.uk

Motion of a charged particle (an electron) in a magnetic field When ultra-relativistic, emits x-rays tangential to the motion

SRS @ Daresbury

<u> Vlu#Irkq#Z donhu∕</u>

Q reh#Sul}h# _h#Fkhp 1wa/ #4<<:

Širu#rxflgdwlrq# ri#kh# hq}/p dwlf#p hfkdqlvp # xqghrp/hj wkh#v/qwkhvlv#ri# dghqrvlqh#wlskrvskdwh +DWS,õ

Ken Peach John Adams Institute

J.A.I.

Examples of use of Synchrotron Radiation

Characterisation of the metallurgical properties of a 7th cBC Corinthian-type Greek bronze helmet

First Ales son of Telemon, bulkvark of the Achaiens, brake a battalion of the Trojens and brought his commoles salention, smitting a warrior that was chieflest among the Thraciens, Eusonos' son Alames the goodly and great. Him first he smote upon his thick-created helmet ridge and drare into his forehead, so that the point of bronze pierced into the boos; and darkness shrouded his eyes'. Homer, IRad VI 5-11, (translation by Andrew Lang, Watter Leaf and Ernest Myen, Mactrillan 1912).

Straightening out protein folding of a small three-helix bundle protein

Recent discoveries show that apparently unrelated diseases such as Alzheimer's, cystic fibrosis or BSE/CJD result from protein folding gone wrong. Understanding how proteins fold and create the three-dimensional shapes crucial to their function is therefore more than a scientific challenge.

CCLRC/SRD annual report

Some Synchrotron Radiation Science

Structure of Anthrax

GLRU

J.A.I.

Diamond @ RAL

J.A.I.

Royal Holloway University of London

The X-ray Free Electron Laser

1035

1033

1031

1029

1027

10.01

mrad² · mm² · 0.1% bandw.)]

15.7 THEFT

America S.

TITT

x10⁹

SAME FRE. 1

- ultrashort pulse duration 100 fs
- extreme pulse intensities 10¹²-10¹⁴ ph
- coherent radiation x10⁹
- x104 average brilliance

Spontaneous radiation (20-200 keV)

- ultrashort pulse duration <200 fs

Hadron Therapy

http://www.adams-institute.ac.uk

Ken.Peach@adams-institute.ac.uk

Ken Peach

How does it work?

3 Field techniques

Carbon ions are <u>qualitatively</u> different from X-rays

Carbon ions deposit in a cell 24 times more energy than a proton producing not reparable <u>multiple close-by double strand breaks</u> so that they can control radioresistant tumours At HIMAC (Japan) the doses are delivered in only 5-10 fractions In Heidelberg and in Pave Europe moves towards the frontier of "dual" <u>centres</u> <u>Amaldi</u>

J.A.I.

The CNAO Italian national centre designed by TERA

Project: Calvi – TEKNE

CNAO Foundation constructs and manages INFN is co-responsible for the construction

A company is negotiating with CNAO a license for PIMMS/TERA

Amaldi

JAL

Project: TERA

FFAG design for carbon ion therapy

Design study of compact medical fixed-field alternating-gradient accelerators

T. Misu, Y. Iwata, A. Sugiura, S. Hojo, N. Miyahara, M. Kanazawa, T. Murakami, and S. Yamada <u>National Institute of Radiological Sciences, Anagawa, Inage, Chiba 263-8555, Japan</u> VSICAL REVIEW SPECIAL TOPICS. ACCELER ATOPS AND REAMS VOLUME 7, 004701 (200)

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 094701 (2004)

E. Keil, A.M. Sessler et al. Non-scaling design has smaller radius

Amaldi

J.A.I.

Many centres world-wide

	1	WHO, WHERE	COUNTRY	PARTICLE	MAX.EIIERGY (MeV)	BEAM	TOTAL PATIENTS TREATED	START OF
	2	Harvard, Boston	USA	р	160	horiz.	9116	1961
	3	Loma Linda	USA	p	250	gantry,horlz.	10740	1990
	4	UCSF	USA	p	60	horiz.	632	1994
	5	MPRI(2)	USA	P	200	horiz.	21	1993
1	6	NPTC, MGH Boston	USA	p	235	gantry,horiz.	1167	2001
	7	TRIUMF, Vancouver	Canada	p	72	horiz.	100	1995
	8	Clatterbridge	England	р	62	horiz.	1372	1989
	9	Nice	France	p	65	horiz.	2861	1991
	10	Orsay	France	р	200	horiz.	3444	1991
	11	G.S.I. Darmstadt	Germany	ion	430/u	horiz.	250	1997
	12	HMI, Berlin	Germany	р	72	horiz.	677	1998
	13	INFN-LNS, Catania	Italy	р	60	horiz.	92	2002
	14	Uppsala	Sweden	р	200	horiz.	520	1989
	15	PSI, Villigen	Switzerland	р	72	horiz.	4440	1984
	16	PSI, Villigen	Switzerland	P**	230*	gantry	262	1996
	17	ITEP, Moscow	Russia	р	200	horiz.	3858	1969
	18	St.Petersburg	Russia	р	1000	horiz.	1281	1975
	19	Dubna	Russia	р	200*	horiz.	318	1999
1	20	WPTC, Zibo	China	Р	230	horiz.	136	2004
	21	Chiba	Japan	Р	70	vertical	145	1979
1000	22	HIMAC, Chiba	Japan	ion	800/u	al	1796	1994
1	23	NCC, Kashiwa	Japan	р	235	gantry	380	1998
	24	HIBMC,Hyogo	Japan	р	230	gantry	779	2001
	25	HIBMC,Hyogo	Japan	ion	320	al	49	2002
1	26	PMRC(2), Tsukuba	Japan	р	270*	al	747	2001
	27	PMRC(1), Tsukuba	Japan	р	70	horiz.	700	1983
100	28	Shizuoka	Japan	р	235	horlz.	256	2003
1	29	Tsuruga	Japan	р	200	al	33	2002
	30	IThemba Labs	South Africa	р	200	horiz.	485	1993
1.18						~ ~	A	

based on information of the Particle Therapy Co-Operative Group (PTCOG)

83

Oncology Protons, heavy ions, electrons

- Preparation of radio-nuclides
- Requires precision control of
 - Energy
 - Dose

- Position

• Just like the linear collider (energy, luminosity)

J A I

Summary

http://www.adams-institute.ac.uk

Ken.Peach@adams-institute.ac.uk

Summary

- There are several global frontier particle physics projects needing new and challenging accelerators over the next 10-20 years
- There will be many other uses of the technologies developed to make them feasible and affordable
 - In other branches of science
 - In industry
 - In medicine
- There will also be national and regional accelerator projects doing frontier research ...
- There are plenty of challenges and opportunities for innovation

AI