



Magnet and related technologies workshop for industry and CERN experts, 7-8 June 2006

# Material development issues

Stefano Sgobba, Gonzalo Arnau Izquierdo TS-MME-MM CERN







- 1. Evolution of materials and manufacturing technologies, core of future developments
- 2. Examples from present projects (LHC) and future developments (CMS conductor, CLIC)

a) End covers and beam screens of the LHC magnets
b) Toward an improved high strength, high RRR CMS conductor
c) Bimetals for CLIC

 $\Rightarrow$  Developments through

Selection, specification, definition or design of materials Extensive use of frontier technologies (near net shaping, HIP-assisted diffusion or explosion bonding...)

3. Conclusions

### LHC DIPOLE : STANDARD CROSS-SECTION

CERN AC/DI/MM - HE107 - 30 84 1999









### Powder production

#### Melting and gas atomizing



Melted and refined steel is led through special notzles into a high-speed irrert gas flow, which atomizes the molten steel into fine, spherical colidited powder particles.

#### Sleving and storage



pouder will be carefully stored to guarantee its cleanimets.

### **Capsule** making

#### Capsule making and compaction



The production capsule for each component will be made out of thin plate by shaping and welding. This capsule will then be filled with gas atomized powder by vibrating the capsule. The capsule is oversized, to allow for the shrinkage which occurs during the powder compaction.

If the end product is designed to comprise of different materials, the powders will be encapsuled separately into different sec. In of the capsule. The other material can also be a solid product, such as a casting to be coated with special material.



#### **Evacuation and closing**



After the capsule has been filled with powder, the air will be evacuated and the capsule closed tightly.

#### Hot Isostatic Pressing (HIP)

PARTNENT



The temperaturer pressure cycle of the hot isostatic pressing:



The sealed captules are moved to a pressure vessel used in the HIP-process. With the aid of high-pressure Ar-gas the capsule is subjected, in the pressure vessel, to an isottatic pressure which by means of high temperature (about 70% of the melting point of the material being used) turns the powder into a 100% compact material. The homogeneity of the end product is the same as that of the powder. The properties are even and do not depend on the orientation.

# HIPed AISI 316LN end covers for CERN LHC project (courtesy of Metso)





After capsule removal by pickling and heat treatment, before machining











| The second second | ALL RAN | A CALLER | net of              | DEPARTMENT         |  |
|-------------------|---------|----------|---------------------|--------------------|--|
| HIPed PM 316LN    |         | Metso    | <b>CERN Specifi</b> | CERN Specification |  |
|                   |         | H 6277   | Min.                | Max.               |  |
| Composition (w%)  | С       | 0.017    |                     | 0.030              |  |
|                   | Si      | 0.59     |                     | 1.00               |  |
|                   | Mn      | 0.71     |                     | 2.00               |  |
|                   | S       | 0.005    |                     | 0.015              |  |
|                   | Р       | 0.012    |                     | 0.040              |  |
|                   | Ni      | 13.07    | 12.00               | 14.00              |  |
|                   | Cr      | 16.98    | 16.00               | 18.00              |  |
|                   | Mo      | 2.53     | 2.00                | 3.00               |  |
|                   | Ο       | 0.011    |                     | 2-                 |  |
|                   | Ν       | 0.185    | 0.15                | 0.20               |  |

## **Typical Oxygen levels**

| in 316LN:                                 | Couturier et al. (1998)    | 200 ppm          |
|-------------------------------------------|----------------------------|------------------|
| The set ?                                 | Dellis et al. (1996)       | 195 ppm          |
| in 304L:                                  | Appa Rao and Kumar. (1997) | 400 ppm          |
| <i>in aust. SS</i> Zou and Grinder (1982) |                            | 300 to 4500 ppm  |
| in 304L                                   | Dunkley (1981)             | 1200 to 7800 ppm |



# Microstructure





PM 316 LN – Metso, Grain size according to ASTM E112: N° 6 to 7





## Microstructure, comparison 2 cast















Fractographic analysis



## Oxides within dimples



Localized ductility (Couturier 99)

usions DEPARTMENT 150 μm Original magnification 200 x

Mainly globular-type



### Magnet end covers

## Compared advantages of possible fabrication techniques

|                                       |        | Find MILLES       |      | Sec. |
|---------------------------------------|--------|-------------------|------|------|
|                                       | welded | closed die forged | cast | РМ   |
|                                       |        |                   |      |      |
| Microstructure                        | -      | ++                | -    | ++   |
| Tensile properties                    | +      | +                 | -    | ++   |
| Impact toughness at 4.2 K             | +      | ++                | +    | +    |
| Near net shaping                      | ++     |                   | +    | ++   |
| Reliability, NDT                      |        | ++                |      | ++   |
| Competitiviness, small series (tools) | +      |                   | +    | +    |
| Competitiviness, large series (tools) | +      | +                 | +    | +    |

## ons



Two dipole magnets equipped with PM covers operated for several years in the "string"

**Price competitive** 



### LHC DIPOLE : STANDARD CROSS-SECTION

CERN AC/\$1/MM - HE187 - 30 84 1999



#### Compared magnetic susceptibility of different austenitic SS and their laser weldments



**Highest possible** temperature of antiferromagnetic transition







# Toward an Improved High Strength, High RRR CMS Conductor

<u>S. Sgobba<sup>1</sup></u>, D. Campi<sup>1</sup>, B. Curé<sup>1</sup>, P. El-Kallassi<sup>1</sup>, P. Riboni<sup>2</sup>, A. Yamamoto<sup>3</sup>

<sup>1</sup> CERN, CH-1211 Geneva
 <sup>2</sup> ETHZ, CH-8092 Zürich
 <sup>3</sup> KEK, Tsukuba, Ibaraki, 305-081 Japan



Insert



### Reinforcement



Fig. 1. Cross-section of the conductor.

| Nominal current                 | 20 kA               |  |  |
|---------------------------------|---------------------|--|--|
| Superconducting strand type     | NbTi- Cu stabilized |  |  |
| Strand Cu/SC ratio              | 1.1                 |  |  |
| Number of strands               | 32                  |  |  |
| Strand diameter                 | 1.28 mm             |  |  |
| Rutherford cable cross section  | 20.68 mm x 2.34 mm  |  |  |
| Insert cross section            | 30 mm x 21 6 mm     |  |  |
| High Purity Aluminum stabilizer | Al 99.998 %         |  |  |
| RRR aluminum at 0 T, annealed   | > 1500              |  |  |
| Reinforcement material          | EN AW-0082          |  |  |
| Conductor cross section         | 64 mm x 21.6 mm     |  |  |
| Quantity produced               | 21 lengths x 2600 m |  |  |



The Association of the second second



## Toward an improved conductor, material selection





### Replace by:

o cold drawn Al-0.1wt%Ni alloy

developed for the ATLAS thin solenoid superconductor (A. Yamamoto et al., Development towards Ultra-thin Superconducting Solenoid Magnet for High Energy Particle Detectors, Nuclear Physics B (Proc. Suppl.) 78 (1999), pp.565-570)
 enhanced mechanical strength
 without excessive degradation in RRR compared to pure AI





### Four roll shaping process (courtesy of Outokumpu /IT)





## Toward an improved conductor, weldability





acc. /kV =120 intensity /mA =9.26 cath. curr /A =1.35 working distance /mm =150 adv. speed /mm·s<sup>-1</sup> =16.7 X,Y scanning



## **Comparison of properties**, basis for a comparison of 4.2 K properties



