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Field range up to 2 T
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Field range up to 4 T

and … do not forget other arrangements with block/split coils – window frame type* 
*notice a cos teta still may be considered as belonging to window-frame type

A Kovalenko

Above 2 T the magnet is no longer iron dominated, but can be “iron helped”
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Field range from 4 to 7 T

TEVATRON
The first successful use of sc magnets in a machine 
Commissioned in 1983, running today at 980 GeV

HERA
The first massive industrialization. 
Commissioned in 1989 at 800 GeV, 920 GeV today 

76.2 mm aperture, 4 T 75 mm aperture, 4.7 – 5.5 T
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Up to 9T
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Size overview
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Future upgrade
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Why upgrading the LHC : Luminosity 

F. Ruggiero & Jim Strait
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Why upgrading the LHC : Energy 

M.Mangano
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LHC Upgrades

Interaction regions upgrade : xx MEuros
Luminosity Upgrade

New quadrupoles and possibly new dipoles in the interaction regions : needed in 2015

Injectors upgrade : xxx MEuros
Luminosity and Energy Upgrade

Fast cycled, low losses superconducting magnets : 5-10 years program

Energy doubler 7 TeV to 14 TeV : xxxx MEuros
Energy upgrade

New dipoles and quadrupoles in the arcs : 15-20 years program
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LHC Insertion Magnets

Dispersion suppressor Matching section Separation dipoles Final 
focus

Courtesy R.Ostojic
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Limits of the present LHC triplets
• Aperture

70 mm coil
63 mm beam tube 
60 mm beam screen → β* = 0.55 m

• Gradient
– 215 T/m → operational 205 T/m

• Peak power density
– 12 mW/cm3 → L = 3 1034

• Total cooling power
– 420 W at 1.9 K → L = 3 1034

Focus on 
– capacity of removing heat (shield + transparency)
– making the quadrupoles stronger and shorter
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Fast cycled magnets for injectors

Requirements
Bore diametre 80-100 mm
Peak field 3.5 T up to 5 T/s or 5 T up to 1.5 T/s
Capable to perform several millions cycles in a radiative environment
Capable to draw beam deposited energy of the order of 5-10 W/m and possibly higher

State of the art
Superferric magnets with internally cooled cables, 2 T peak, 4T/s, 1 Hz,  based on JINR Nuclotron. 
GSO001 model, based on a modified RHIC type dipole, built by BNL for the FAIR Project.
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State of the art : superferric dipoles
SIS 100
• Triangular cycle, 0-2 T, 1 Hz ⇒ 4T/s
• Superferric, window frame
• 2T central field, 4 T/sec ramp
• 18 W/m with Nuclotron design, smaller filaments

Activity
• Design alternatives : warm/cold iron, resistive magnets
• Cable developments (smaller filament size 3.5 microns)

Courtesy AD.Kovalenko
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BNL model : optimize to higher ramp-rate
• Wire twist pitch 4 mm instead of 13 mm
• Stabrite coating instead of no coating
• Stainless steel core (2x25 microns)
• G-11 wedges instead of copper wedges
• Thinner yoke laminations, 3.5 % silicon, glued with epoxy.

Courtesy A.Ghosh, P.Wanderer, M.Wilson

State of the art : 4T dipoles
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Fast cycled magnets

A considerable advancement of the state of the art is needed.

•development of low AC losses cables  with fine filament (1 μm diameter) in resistive matrix
•thermal models and different cooling schemes, with optimization of the whole cryogenic chain;
•magnet design with wide bore and cable insulation configurations for improved heat removal;
•loss computations models as well quench propagation models;
•powering and protection schemes with development of novel techniques for quench detection
•characterization of mechanical/fatigue behavior of materials and structures to guarantee 10 Mcycles;
•radiation resistance of material to be employed;
•design and set-up of fast magnetic measurements systems in the 20-100 Hz range;

The use of internally cooled cables, at least for fields up to 4 T, may also be envisaged. This option makes 
however magnet manufacture (in particular the interface with connections and interconnections) and 
operation much more difficult and less reliable than with Rutherford cables, and shall be reserved where 
heat deposition from beam losses becomes much higher than the order of 10 W/m of magnet length.
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Strand & Cable R&D for pulsed magnets
2 types of dipoles aperture in the range of 80-120 mm:

Peak field Ramp-rate Cycle Length Salient aspects

PS+ 3.5 T 5 T/s 2 s 4 m High ramp-rate, large aperture

SPS+ 4.5-5.5 T 1.5 12 s 6 m Moderate ramp-rate, higher field

2 types of superconducting wires/cable :

Filament Φ Matrix Cable Ra Cable Rc Status of wire

PS+ ~ 1 μm Cu-Mn or Cu-Ni >0.8 mΩ >40 mΩ Feasible, but needs massive R&D

SPS+ < 3 μm Cu-Mn or Cu-Ni >0.3 mΩ >10 mΩ Needs industrialization

• industrialize 3 μm filaments in resistive matrix : moderate R&D, billets, measurements

• develop 1 μm filaments in resistive matrix : massive R&D, billets, filaments

• optimize wire coating techniques to achieve the required electrical and thermal properties

• study stability of cables as a function of adjacent and cross inter-strand resistance

• establish, and validate with experimental results, loss computations models

• instrumented model magnets have to be built and tested to provide feedback to wires/cables
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Pipetron - VLHC magnets FNAL
• Invented in Fermilab by W. Foster around 1995-96
• 0.45 TeV injection at 0.48 T
• 1.5 TeV top at 1.595 T (55KA)
• 1 m prototype tested at FNAL
• Reported at MT19

Courtesy of H. Piekarz (Fermilab)
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Tunnel space

Courtesy G. de Rijk
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Energy doubler/triplerCritical Current
Density, A/mm²
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Progress on Nb3Sn
Manufacturing and test of ITER model coils ~30 t of Nb3Sn wires
US National Program for high-current density Nb3Sn wires
Dipole models opening the 10-to-15 T field range.
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Magnet Design

Racetrack type 
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High Field Magnet Road Map
Technology Machine Field Year

Cu (resistive) LEP, ESRF
Soleil, Diamond

< 2 T 1970’s

NbTi, 4,2 K Tevatron 4 T 1983

NbTi, 1,9 K Tore Supra 7 T (conductor peakfield) 1988

NbTi, 1,9 K LHC 8.33 T 2007

NbTi, 1,9 K NEUROSPIN 11.7 T (conductor peakfield) 2008-2009 ?

Nb3Sn, 4,2 K ITER/EDA
ITER

12 T (conductor peakfield) 1995-2000
> 2010 ?

Nb3Sn CARE/NED
LHC IR upgrade
LHC doubler

14-15 T 2004-2008
2015 ?
> 2020 ?

BSCC0 LHC tripler 24-25 T > 2030 ?

Courtesy of L.Rossi
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Magnet Programs worldwide
• EU

– CARE/NED : 8 institutes, CCLRC, CEA, CERN, CIEMAT, INFN/Milan and 
Genova, Twente University and Wroclaw University of Technology

– Two very small programs: CERN/Twente and CEA/Saclay

• US
– Four independent base programs (BNL, FNAL, LBNL and TAMU)

– Three labs collaborate under LARP

• Japan/KEK
– Nb3Sn and Nb3Al conductor development and Al stabilized conductors

– Cost-effective magnets for accelerators and beamlines



Conclusions
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Superconducting magnets for accelerators : three trends

• fast cycled (common interest with FAIR and possibly medical applications)

• high field (any cost)

• high field low cost

Desirable initiatives in Europe

More participation and efforts into base Sc materials research

Development of wire/cable processing & industrialization 

Consolidate practical experience with materials and magnets

Development of concepts for low cost HF magnets : design and manufacture 
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